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Charged particle transport in antidot lattices in the presence of magnetic and electric fields:
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Magnetotransport experiments on antidot lattices show a rich variety of physical phenomena. Depending on
the value of the particle mean-free path / in relation to the period N\ of regular scatterers, two very different
regimes can be distinguished: the strongly diffusive (/<<\) and the weakly diffusive (/=\). We study particle
transport in two-dimensional periodic landscapes based on a classical Langevin equation. The model covers
both regimes and exhibits many of the features found experimentally at low magnetic fields. The most inter-
esting observation is the presence of anomalous peaks in the magnetoresistance as a function of the magnetic
field in the weakly diffusive regime. The roles of finite temperatures and of the electric field are also discussed.
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I. INTRODUCTION

Interesting mesoscopic experiments in semiconductors
have been carried out in two-dimensional (2D) electron gases
(2DEG) formed at the interface between two semiconductors
with different band gaps (typically n-type AlGaAs and
p-type GaAs).! When these semiconductors are brought in
contact, they form a heterojunction whose energy bands are
different from the valence and conduction bands of the indi-
vidual semiconductors. Electron transfer takes place from the
semiconductor with the wider band gap (n AlGaAs) to the
other, leaving behind some positive donors. This charged
zone produces an electrostatic potential that causes the bands
to bend at the interface, forming a triangular potential well
where the Fermi energy Ey (which is constant everywhere at
equilibrium) remains inside the conduction band. At low
temperatures, the electric current is carried mainly by elec-
trons whose energy is close to the Fermi energy so they
remain trapped in this region, being free to move in two
dimensions but tightly confined in the third (the direction
perpendicular to the interface).’

This very thin conducting layer is called a 2DEG and
appears in many transistorlike structures. It represents a high
mobility system which offers the possibility of exploring the
fundamental physics of electron transport. Charge density in
this type of system can be spatially modulated by imposing a
confining potential by means of conventional fabrication
techniques. For example, lithography can be used to fabri-
cate a modulated array of holes on a surface which can then
be transferred to the 2DEG by deep mesa etching.>

Most attention has been focused on periodic modulations.
Depending on the amplitude of this modulation in relation to
the Fermi energy, the structure can be an array of quantum
dots (in which electrons are confined) or, if these dots over-
lap, an array of voids or “antidots” (regions impenetrable to
the electrons). Moreover, using appropriate experimental
techniques, it is possible to reduce the depletion region
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around each antidot (i.e., the region from which the carriers
have diffused away). As a result, it is possible to obtain weak
saddle points between antidots, that is, an essentially flat
surface with a steep obstacle landscape. This configuration
appears to be optimal in exhibiting interesting “‘anomalous”
phenomena.

A different but conceptually related class of transport ex-
periments that are receiving increasing interest involves
paramagnetic colloidal particles on patterned surfaces driven
by applied magnetic fields. Here the observations include
sorting of particles of different characteristics such as size,
directed transport, and anomalous diffusion.*

An inclusive approach to these types of problems leads us
to focus on transport properties of charged particles through
antidot arrays at low magnetic fields. Standard four-terminal
magnetoresistance measurements (see Fig. 1 in Ref. 5) show
an oscillatory dependence of the magnetoresistance on the
magnetic field B (see Fig. 2 in Ref. 6, arguably the paradig-
matic reference on commensurability effects in antidot ar-
rays). These oscillations reveal a dependence on the period
of the imposed pattern,>>~'% and differ from the well-defined
Shubnikov-de Haas oscillations of quantum-mechanical ori-
gin associated with time-periodic variations in 1/B. In our
work we explore some of the physical mechanisms that are
responsible for the observed phenomena by performing nu-
merical simulations of the particle motion based on classical
orbit theory to describe electron dynamics. Our approach of
course does not capture quantum effects but it is nevertheless
able to capture theoretical and experimental observations
over a wide range of values of the particle mean-free path
within a single model formulation. Thus, while we cannot
aspire to quantitative agreement with quantum experiments,
it is interesting that one can capture many of the observed
features qualitatively with a classical formulation.

The paper is organized as follows. In Sec. II we introduce
the model and specify the observables. In Sec. III we present
the numerical simulation results and their comparison with
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available theoretical and experimental data. Finally, we end
with some conclusions in Sec. IV.

II. MODEL

Most experimental observations>= as well as existing

theoretical studies®!?> confirm that transport experiments in
modulated 2DEG can be understood at least qualitatively in
terms of classical nonlinear dynamics provided that the anti-
dot lattice spacing is larger than the wavelength associated
with the typical particle energy (Fermi wavelength in an
electron system) and the magnetic field B is not too strong.
In this vein, the model we introduce considers a set of inde-
pendent charged particles moving on a two-dimensional x
—y surface covered by a regular array of obstacles, in the
presence of crossed electric (E=EX) and magnetic (B=B?%)
fields. In the Langevin framework, the particles are also sub-
ject to thermal noise and the associated dissipation. The
equations of motion can be written as

.. . 24 )
mi=qBy + gE — (9— yx+ &.(1),

-
av
m}'5=—q393—5—w'+§y(t), (1)

where m is the particle mass and ¢ is the particle charge. The
friction coefficient y gives rise to a momentum relaxation
time 7,=m/v, and the £(t) are mutually uncorrelated white
noises that obey the fluctuation-dissipation relation at tem-
perature 7,

(&(NE(t') =2€5;6(t-1'), (2)

with noise intensity e=kzTy. A continuous periodic potential
is used to model the antidot array,

V(xX/N,y/N) = VoU(xXIN,y/N)
Vo

e i)l ]

(3)

where M\ is the spatial period. The parameter V,, controls the
height of the obstacles, a controls their steepness, and b de-
termines the size of an obstacle relative to the spatial period
\, in such a way that for fixed a, larger values of b lead to
shallower and narrower obstacles. Both of these parameters
also affect the obstacle height. A finite portion of this poten-
tial, and the effect of changing a (b) for fixed b (a), are
shown in Fig. 1.

In the absence of the potential (V,=0), a uniform mag-
netic field B causes the charged particle to perform cyclotron
motion on a time scale,

s

m

t.= m~ (4)

Measuring time in units of this characteristic time and length
in units of the lattice constant leads to scaled variables r,
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FIG. 1. Upper panel: a finite portion of the two-dimensional
periodic potential [Eq. (3)] for parameters a=5, b=0.8. Lower
panel: potential profiles V(x,0) for fixed a=10 (left) and fixed b
=0.8 (right). Vy=1 in both panels.

=x/\, ry=y/\, and s=t/1,=|q|Bt/m. Consequently, the equa-
tions of motion (1) and the fluctuation-dissipation relation
(2) can be rewritten as

. . E Vydd 5y,
AEht T g, Tt 7:(s),
L. Wiy,
ry=rx— Ea_r‘,_ Ery+ ﬂy(s), (5)
and
o ,
(mi(s) (s )>=2E5,-j5(s—s )s (6)
where
~ mE ~ mV, ~ V,
E=——, Vo=, 7=Z» T=keT—". ()
Aq g q Vo

As can be seen in these equations, the choice of 7, as the
characteristic time of the system leads to the explicit display
of the dependence of all the terms in the equations of motion
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(5) on magnetic field B. This choice differs from the scaling
used in other numerical work.'%!! For qualitative comparison
with experimental work and with other existing computer
simulations we set the charge g equal to the electronic charge
—€ (e being the elementary charge) and m equal to the effec-
tive mass of an electron in a 2DEG in the single-particle
approximation, i.e., 0.067m, (where m, is the mass of an
electron).

Relation (7) defines the four independent parameters of
the model whose values must be fixed in every numerical
experiment and related to experimental values. Note that
these four redefined parameters are not dimensionless. In-
deed, they carry unusual dimensions but allow us to focus on
the B dependence of our results. We fix these parameters in
our computations and focus on the behavior of the resistivity
as a function of the magnetic field.

The standard observables for this scenario are: (1) The
diagonal and off-diagonal resistivities p,, and p,, in a square
geometry, V

Oy —-Em <rx>
P 2w o2 T BN+ (7))
O-X ) - Em <i >
Poy="3 " s (8)

P+, @B+ ()

which measure the electric response parallel and perpendicu-
lar to the applied electric field. The parameter r; is the charge
density in 2D, which is a known quantity in the case of an
electronic system. p,, is called the magnetoresistance and p,,
is the Hall resistance. Here we have used the fact that the
conductivity tensor o=p~! relates the electric field E and the
electron velocity vector v, n,gu=oE. (2) The resistivity ratio
(“rotation number”) p,

=%x=§_:%_ 9)

In the case of an unpatterned 2DEG, Eq. (5) leads to the
resistivity ratio

Be
po=—"= (10)
Y

x| =

at long times.

We now proceed to obtain these quantities from our nu-
merical simulations as functions of the external parameters
B, E, and .

III. SIMULATION RESULTS AND DISCUSSION

In a classical approach to charged particle transport, the
interaction between the circular trajectories induced by B and
the antidot array gives rise to chaotic motion. Together with
the stochasticity in the model [Eq. (1)], the problem becomes
analytically intractable. Therefore, we have proceeded to per-
form numerical simulations of the Langevin Eq. (5) using a
second-order Runge-Kutta stochastic algorithm.'?

We consider two different initial conditions. First, in the
strongly diffusive regime, the charged particles are initially
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FIG. 2. Resistivity ratio p vs the resistivity ratio when V(=0
(po=B/%) for E=1.75, ¥=5, T=0 K, and potential parameters:
\70=0.175, a=5, b=0.7 (solid line), and »=0.9 (dotted line).

uniformly distributed over a region between antidots with
random initial velocities. Specifically, we place the particles
in square regions of size 0.125\ X 0.125\ centered between
obstacles, having ascertained that for all the parameters used
in our simulations the ratio V(x,y)/V, is zero to at least four
significant figures in these regions. Second, in the weakly
diffusive regime the particles are initially aligned perpen-
dicular to the electric field with a Gaussian distribution of
velocity magnitudes whose average is the Fermi velocity
(vp=3X107 cm s~ in the case of electrons). This mimics
the arrival of particles in the region where the magnetic field
is present upon application of an electric field (as happens in
an electrode).

A. Strongly diffusive regime

The charged particle motion is said to be strongly diffu-
sive when the cyclotron frequency becomes irrelevant to the
motion. This occurs when the particle mean-free path / (mea-
sured in the absence of the periodic potential) is much
smaller than the period N of the regular scatterers, and is thus
characterized by rapid momentum relaxation (small 7, or
large ). It also requires a sufficiently small obstacle height
parameter V. There are no experimental results in this re-
gime but we are able to compare our results with those in
Ref. 12, also classical, but where the periodic potential is
modeled by a cosine product instead of the functional form
Eq. (3) proposed in this paper. To facilitate the comparison,
in this subsection we set the values N\=0.5 um and n;
=10'2 cm~2 as in Ref. 12. Note that in this regime the results
are insensitive to the initial distribution of the particles.

The results exhibited in Figs. 2 and 3 should be viewed in
conjunction with the associated trajectories shown in Fig. 4
for a fixed electric field along the x direction. In this over-
damped regime the inertial terms in the equations of motion
(5) can be neglected (#,=7#,=0). In the absence of the ob-
stacles the trajectories are straight lines in a direction deter-

155433-3



KHOURY et al.

Py (KQ)

Py (KQ)

0 2 4 6
B (Tesla)

w

FIG. 3. Hall resistance p,, and magnetoresistance p,, vs mag-
netic field B for the same parameters as in Fig. 2.

mined by the magnitude of the perpendicular magnetic field
at an angle from the x axis that increases with increasing
magnetic-field magnitude B. These are indicated by the
dashed lines in the figure. The average velocity components
associated with these trajectories in the steady state are found
directly from the equations of motion (5) upon setting (#;)
=0 (in this overdamped regime this state is reached quickly),
y E , E
= o BWE o
BB+ % B*+ %

Note that therefore the trajectories in the figure all have dif-
ferent velocity components and total velocities, even in the

(70 (11)

FIG. 4. (Color online) Trajectories for B=1.2, 2.9, 4.1, and 6.5
tesla, with increasing angles corresponding to increasing values of
B. Results are shown for two different potential parameters, b
=0.7 (solid lines) and b=0.9 (dotted lines). The dashed lines indi-
cate the particle flow direction in the absence of antidots.
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absence of obstacles. Also, note that Figs. 2—4 are obtained
for zero temperature and hence these average velocities are
the actual velocities. For each magnetic-field value we show
two trajectories for different values of the parameter b whose
increasing value is associated with shallower and narrower
obstacles. While the obstacles of course affect the particle
velocities, these are again essentially constant in time. Focus,
for instance, on the trajectory associated with the lowest
magnetic field (B=1.2 tesla) and b=0.7 (solid line). The im-
portant observation is that the particle trajectory in the pres-
ence of the obstacles is essentially horizontal due to obstacle
avoidance while it evolves at an angle if the obstacles are not
there (or if the obstacles are less prominent, b=0.9).

Indeed, for any value of the magnetic field below and
perhaps somewhat above B=1.2 tesla, the trajectory with the
more prominent obstacles is essentially horizontal and thus
its direction is insensitive to the value of the magnetic field.
There are thus ranges of values of the magnetic field for
which the obstacles deviate the particle flow toward the x
direction and, similarly, some regimes of B values for which
the obstacles deviate the flow toward the y direction. One
can think of this as the “trapping” of trajectories in the pres-
ence of obstacles. As a result, p,, vs B exhibit peaks, as can
be seen in the bottom panel of Fig. 3. The very same insen-
sitivity to changes in B induced by the obstacles disturbs the
otherwise linear p,, vs B behavior of the off-diagonal resis-
tivity, leading to the plateaus with dips seen in the upper
panel of Fig. 3 and, as a consequence, the plateaus in the
resistivity ratio seen in Fig. 2. In Ref. 12 these features are
analyzed formally and in detail (for the potential used in that
work), and are related to the dynamical phenomenon of
mode locking. In particular, it is shown that the plateaus are
described as a Devil’s staircase. In general, the peaks and
plateaus depend on the parameters V|, and b, and become less
pronounced when the obstacles are smaller and narrower, as
can be seen in the dotted lines in the figures; as b decreases
(larger obstacles) the plateaus become longer. This sort of
trajectory trapping behavior has also been seen in the study
of the flow of colloidal particles over periodically patterned
surfaces, where this trapping behavior is used to sort par-
ticles of different characteristics such as particle size.'*-!°
Even though we find a good correlation between our results
of Figs. 2 and 3 and those in Ref. 12, we find some differ-
ences mainly due to the specific differences in the potential
functions. Aside from these differences, the main features
discussed in Ref. 12 have been obtained in our simulations as
well.

The potential strength or intensity parameter V,, also af-
fects the magnetoresistance measurements. Lowering its
value leads to a larger number of smaller plateaus since new
trapping trajectories are now possible between those associ-
ated with the long plateaus at higher values of V,.

Another interesting insight provided by our study is the
role of temperature. It is clear that as the temperature 7 in-
creases the trajectories become more erratic and, as a conse-
quence, the magnetoresistance maxima lose intensity (as can
be seen in Fig. 5).

In this figure, the potential intensity V|, is larger than be-
fore so the details unveiled in Fig. 3 are now no longer
resolved. However, three global maxima of the magnetore-
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FIG. 5. Magnetoresistance p,, (upper panel) and resistivity ratio
p (lower panel) vs magnetic field extending to high B values for
different temperatures. 7=0 K (solid line), 7=2 K (dashed line),
and T7=20 K (dotted line). The potential parameters are E=V,
=1.75, a=5, and b=0.7.

sistance are found in the extended B range. Again, they origi-
nate from the mechanism discussed earlier.

It is interesting to speculate about the capability of sorting
different charged particles with the sort of construct dis-
cussed above.!4~16 In this context, one can think of the pa-
rameter b as a reflection of the particle characteristics (how
the particle “sees” a given array of antidots) such as particle
size or electric charge. Thus, a larger value of » would then
be associated with a smaller particle. Different particles
would then be deflected in different directions by a given
magnetic-field intensity, and a mixture of particles could thus
be sorted. Figure 6 illustrates the difference in the deflection
angles (measured from the x axis defined by the electric-field

0.3

02 b

tan B

0.2 I I I
0 2 4 6

B (Tesla)

FIG. 6. Comparison of deflection angles for »=0.7 and b=0.9,
calculated in terms of B8=p(b=0.9)—p(b=0.7). The dotted lines
correspond to the magnetic-field values of the trajectories in Fig. 4.
Values of other parameters are as in Fig. 2.
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FIG. 7. (Color online) Typical trajectories at B=0.35 tesla for
different values of the friction parameters indicated in the panels. In
each case we include two trajectories in the presence of obstacles,
as well as the trajectory in the absence of obstacles. In all panels the
remaining parameters are b=0.7, a=5, E:0.0Z, ‘70=2, and T
=0 K.

direction) for two different values of b. This figure reveals
the specific B values for optimal sorting for the two values of
b chosen in the figure.

B. Weakly diffusive regime

We next move to the regime in which the dissipative in-
teractions between the particles and the environment are
weak. It is interesting to characterize the transition from the
strongly diffusive to the weakly diffusive regime by consid-
ering the typical aspect of trajectories as the friction param-
eter changes. In Fig. 7 we show typical trajectories for dif-
ferent values of the friction parameter. In each case we also
show the trajectory that is followed in the absence of ob-
stacles (V,=0), and we see that in all cases the obstacles
cause the particles to move in directions different than that
determined by the applied fields alone. At high friction
(lower right panel) the trajectories follow the paths described
earlier, with deviations from the trajectory in the absence of
obstacles (which is a straight line in this regime) caused en-
tirely by collisions with the obstacles. As the friction param-
eter decreases, the trajectories acquire increasingly chaotic
contributions, and we also begin to see the effects of the
cyclotron motion both with and without obstacles. At the
lowest value of the friction (upper left panel) the trajectories
are chaotic and deviate in a random direction from that of the
obstacleless case. This latter trajectory clearly exhibits the
cyclotron motion contribution.

The weakly diffusive regime considered in this section is
thus that illustrated in the upper left panel of Fig. 7. This
regime is characterized by a particle mean-free path which is
larger than the period of the scatterers, i.e., [=\. As noted
above, in this regime the classical cyclotron motion (with
R.=muv/eB) becomes relevant to the dynamical description
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FIG. 8. (Color online) Left panel: single trajectories for two
different B values. Right panel: Fragments of single trajectories for
different B values. (a) (B=0.5) and (b) (B=0.8) are trapped trajec-
tories, (c) (B=0.5) and (d) (B=0.4) pinned orbits (encircling one
and four antidots respectively), and (e) (B=0.6) and (f) (B=1.0) are
runaway paths. In both panels the y=0.001 and the remaining pa-
rameters are as in Fig. 7.

since particles can complete piece-wise circular orbits be-
tween collisions with the potential obstacles. This is the re-
gime of existing experiments.>>~ In most experiments \ is
in the range of 0.2-0.3 um and n, between 1.5X 10! and
43%10" cm™, and so we set \=0.3 um and n,=2.4
X 10" ecm™ in our simulations (both smaller than in the
previous subsection).

It has been claimed in the literature that the most relevant
phenomenon in this regime is the occurrence of commensu-
rability peaks in the magnetoresistance, which appear when
the potential intensity V/, is strong (high obstacles) and the
magnetic field is very low. These anomalous peaks are not
observed in an unpatterned 2DEG. We go on to explore these
phenomena.

The (classical) trajectories in the weakly diffusive regime
are complicated and have been characterized in a number of
different ways, made even more difficult by the fact that in
addition to geometry and commensurability there are random
thermal contributions, dissipative contributions, and even
chaotic contributions to the motion.

On the one hand there are essentially pinned or trapped
orbits (right panel of Fig. 8, fragments ¢ and d) in which the
particles either circulate around one or more antidots (with
perturbations due to thermal, dissipative, and chaotic contri-
butions) or are trapped within a cell of four obstacles (right
panel of Fig. 8, fragments a and b). In these trajectories the
particles remain essentially localized and contribute little to
the transport process but increase the magnetoresistance.

On the other hand, there are trajectories that are variously
called scattered or runaway in which the particles move
along arclike paths from antidot to antidot interrupted by
scattering events as they encounter obstacles, which happens
more often in the direction perpendicular to the electric field
(right panel of Fig. 8, fragments e and f). The precise net
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FIG. 9. Magnetoresistance p,, and Hall resistance p,, vs mag-
netic field B for =0.001, E=0.02, V,=2, T=0 K, a=5, b=0.7,
and three different system lengths: L=10 (solid line), L=20 (dashed
line), and L=50 (dotted line).

direction in which the particles move is a difficult problem
that has only been tackled via numerical simulations and
experimental observation.»>~!! Indeed, in the weakly diffu-
sive regime inertial contributions are important, and each
feature of the potential landscape (a, b, and V;) strongly
influences the detailed trajectory and hence the magnetore-
sistance. For large values of B, a corkscrew or runaway mo-
tion in which the charged particles interact very little with
the obstacles dominates and, accordingly, there is an increase
in the conductance associated with a decrease in the magne-
toresistance. This motion is described in detail in Ref. 6.
While most discussions in the literature tend to neatly sepa-
rate the different types of trajectories, the illustrations in the
left panel of Fig. 8 make it clear that such a separation is
unrealistic and that the various types may contribute to a
single trajectory. Charged particles follow trajectories, each
of which is sometimes pinned, sometimes runaway, and
sometimes even chaotic, and the end result is clearly ex-
tremely complex. Indeed, the complexity of the problem
makes a quantitative description and comparison with other
studies difficult but it does allow for qualitative comparisons
of the interesting behaviors observed in this regime where
such results are available.

In order to study this complex regime, it is useful to dis-
tinguish two possible experimental setups: small systems’
and large systems.® System size is a way to probe different
temporal regimes. Accordingly we have performed numeri-
cal simulations for three different square lattices of sides L
=10, 20, and 50 units of length.

In the smaller lattice (L=10), a rich structure emerges
where the magnetoresistance now exhibits two distinct peaks
(Fig. 9) that arise from the different ways in which orbitals
can become trapped around the potential maxima. Moreover,
the details of the results are sensitive to initial condition.
That is, the system is underdamped and the particles exhibit
important inertial contributions throughout their history.
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As the system size is increased, the particles require more
time to cover the potential region; the second peak in the
magnetoresistance loses intensity (L=20), and for an even
larger lattice (L=50) only one maximum remains, as seen in
Fig. 9. This larger B peak is associated with the commensu-
rability relation R.=\/2 and is caused by mostly pinned
trajectories. It loses its intensity as the potential landscape
becomes steeper, i.e., as the antidot radius shrinks and the
saddle points between antidots become weaker (causing in-
terobstacle regions to become flatter). As the effects of the
potential weaken in this way, trapping events due to pinned
orbits become less probable and runaway trajectory contri-
butions acquire larger x components. In this case (L=50) the
magnetoresistance as a function of B shows no significant
dependence on initial condition.

Our numerical results in both of these low damping re-
gimes are in qualitative and even semiquantitative agreement
with experimental outcomes in both Fig. 2 and Table I of
Ref. 6, where samples are briefly illuminated, causing the
charge-carrier density n, and the mean-free path / to increase
and the effective antidot diameter to decrease.!” As a conse-
quence, a rich peak structure of lower intensity emerges. In
particular in that work the magnetoresistance also exhibits
one or two peaks depending on the values of the parameters.
However, it is not straightforward to compare quantitatively
the curves of Fig. 2 of Ref. 6 with our Fig. 9. In the experi-
mental work, the electrons are quantum-mechanical entities
that interact with one another, and therefore a change in n,
the charge density, does not simply produce a curve shift as
it does in our noninteracting classical particle model, e.g., in
our Eq. (8). Our only tunable control parameter is the fric-
tion, which may reflect particle-phonon interaction effects.
The best we can do is to explore whether we can choose this
parameter so as to recover the results obtained for a given set
of experimental parameters. Indeed, the locations of the
magnetoresistance peaks in Fig. 9 and those of Fig. 2 of Ref.
6 are compatible, and correspond to the commensurability
conditions R.=\/2 and R.=3\/2. The irregularity of our
peaks results from the fact that, as illustrated in the left panel
of Fig. 8, the charged particles follow a highly irregular and
even chaotic path, sometimes “quasipinned” and sometimes
“quasirunaway.”® The mechanism of trapping (and conse-
quently the decrease in particles transport) is therefore due to
a complex combination of these two types of trajectories. We
are thus able to choose parameters that lead to concordance
with experimental results. In any case, the long-time behav-
ior as expressed in our largest system always exhibits a
single peak in the magnetoresistance due to the dominance of
runaway trajectories.

Lastly, we comment on the Hall resistance shown in the
lower panel of Fig. 9, and note its qualitatively similar pla-
teau structure (albeit in a different magnetic-field regime) to
its behavior in the strongly diffusive case (upper panel of
Fig. 3). This is evidence of the fact that even when the tra-
jectories are more complex, there are still ranges of B values
for which these now more complex trajectories are pushed
by the obstacles to lie along a particular direction, with a
resulting directional insensitivity to the value of B. In other
words, we see again the “trapping of trajectories” effects on
the more complex trajectories caused by the obstacles as ob-
served earlier for the simpler trajectories.
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FIG. 10. Resistivity p,, vs magnetic field B for different tem-
peratures: T=0 K (solid line), 7=10 K (dashed line), T=30 K
(dotted line), and T=100 K. System size is L=50 and parameters

are 7=0.001, E=0.02, V=2, a=5, and b=0.7.

Our model also allows us to study the dependence of the
magnetoresistance on other experimental variables such as
the temperature and the electric field, leading to a series of
predictions to compare with future experiments. For in-
stance, magnetoresistance experiments are usually performed
at very low temperatures (typically 7<5 K), which sup-
presses the presence of impurities and phonon scattering, but
if the sample is of very good quality one should be able to
observe the peak broadening typically caused by thermal
motion.

Figure 10 reveals that the position of the prominent peak
in the magnetoresistance (associated with the commensura-
bility relation R.~ \/2) is rather insensitive to temperature,
and that only for very high temperatures does the curve
spread and the position of the magnetoresistance maximum
move to slightly higher values of B. Although one may ob-
serve other possible small maxima for large B, intrinsic data
fluctuations inhibit satisfactory resolution of such peaks.

Finally, the effects of the electric field merit at least pre-
liminary attention. As far as we know, this is a topic not
addressed in the literature.

In Fig. 11 we plot the magnetoresistance for several val-
ues of the electric field in the small and large system cases.
For a small system (upper panel of Fig. 11) both peaks
spread and move to the right with increasing field. Surpris-
ingly, for small systems a third peak appears for B> 1.5. It is
not evident why trajectories become trapped at these values
of B but they clearly do. For a large system, the single peak
also moves to the right and the B domain of very large mag-
netoresistance increases (lower panel of Fig. 11).

Figure 12 shows the magnetoresistance as a function of
electric field in large systems for three values of the magnetic
field within the B scale shown in Fig. 11. We have included

Py VS E for values of the electric field smaller than those in
Fig. 11 to test if the behavior is in the linear-response regime.
Clearly, although small, these electric fields are still not suf-
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Py (KQ)
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FIG. 11. Magnetoresistance in small (top) and large (bottom)
systems for different E values: 0.02 (solid line), 0.07 (dashed line),
and 0.1 (dotted line). T=0 K; system parameters are the same as in
previous figure.

ficiently small to place the system in the linear-response re-
gime where p,, is independent of E, except perhaps for the
largest B field and the smallest E fields shown. We have not
gone to even smaller values of E because the calculations
become onerous as it takes a very long time for the particles
to cross the system (we have not done this for a small system
S0 as not to obscure the situation with system size effects).
These preliminary numerical results exhibiting fairly com-
plex nonlinear behavior will hopefully stimulate new
experiments.

IV. CONCLUSIONS

We have modeled magnetotransport phenomena on anti-
dot lattices using a Langevin equation model of classical
noninteracting charged particles moving in a two-
dimensional spatially modulated potential surface in the
presence of external electric and magnetic fields. Our ap-
proach is in the spirit of earlier classical approaches to the
problem.?~!! However, our main goal has been to capture the
two dynamical regimes that have been studied, the strongly
diffusive and the weakly diffusive, within a single model
formulation. These have in the past been studied
separately.>!> Moreover, our model includes a noise term
which allows us to explore the temperature dependence of
the dynamics and of the magnetoresistance and Hall resistiv-
ity.

Our results are consistent with existing results in the
strongly diffusive regime (all theoretical).'> Experiments
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FIG. 12. Magnetoresistance p,, Vs E for three different B values:
0.35 (solid line), 0.85 (dashed line), and 1.5 tesla (dotted line). The
lines simply connect the computed values. System size is L=50 and

parameters are: y=0.001, ‘70=2, T=0 K, a=5, and b=0.7.

have all been performed in the weakly diffusive regime,>>~

and our results are qualitatively and even quantitatively con-
sistent with these as well.® We have noted the sorting capa-
bility of antidot arrays, a capability that has not yet been
experimentally pursued. Also, while we have assumed that
the electric field E is small, our approach allows us to ex-
plore more broadly the role of this parameter in the dynamics
as well as the role of temperature. Finally, it is worth stress-
ing again that our parametrization [Eq. (7)] highlights the
relevance of cyclotron motion not only in the small B-weakly
diffusive regime but also in situations in which particles do
not describe closed orbits.

While our model is classical and therefore inherently lim-
ited in its ability to capture quantum behavior in a GaAs/
GaAlAs systems, we have seen that the model nevertheless
does well. A more quantitative test would be possible if there
were experiments of this type involving, for instance,
charged colloidal particles. While sorting experiments in-
volving uncharged colloids are available, we have not iden-
tified any involving charged particles. Perhaps this work will
motivate such experiments.
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